Gödel's God in Isabelle/HOL
نویسندگان
چکیده
A1 Either a property or its negation is positive, but not both: ∀φ[P (¬φ)↔ ¬P (φ)] A2 A property necessarily implied by a positive property is positive: ∀φ∀ψ[(P (φ) ∧ ∀x[φ(x)→ ψ(x)])→ P (ψ)] T1 Positive properties are possibly exemplified: ∀φ[P (φ)→ ♦∃xφ(x)] D1 A God-like being possesses all positive properties: G(x)↔ ∀φ[P (φ)→ φ(x)] A3 The property of being God-like is positive: P (G) C Possibly, God exists: ♦∃xG(x) A4 Positive properties are necessarily positive: ∀φ[P (φ)→ P (φ)] D2 An essence of an individual is a property possessed by it and necessarily implying any of its properties: φ ess. x↔ φ(x) ∧ ∀ψ(ψ(x)→ ∀y(φ(y)→ ψ(y))) T2 Being God-like is an essence of any God-like being: ∀x[G(x)→ G ess. x] D3 Necessary existence of an individual is the necessary exemplification of all its essences: NE (x)↔ ∀φ[φ ess. x→ ∃yφ(y)] A5 Necessary existence is a positive property: P (NE ) T3 Necessarily, God exists: ∃xG(x)
منابع مشابه
Types, Tableaus and Gödel's God in Isabelle/HOL
A computer-formalisation of the essential parts of Fitting’s textbook Types, Tableaus and Gödel’s God in Isabelle/HOL is presented. In particular, Fitting’s (and Anderson’s) variant of the ontological argument is verified and confirmed. This variant avoids the modal collapse, which has been criticised as an undesirable side-effect of Kurt Gödel’s (and Dana Scott’s) versions of the ontological a...
متن کاملImporting HOL into Isabelle/HOL
We developed an importer from both HOL 4 and HOL-light into Isabelle/HOL. The importer works by replaying proofs within Isabelle/HOL that have been recorded in HOL 4 or HOL-light and is therefore completely safe. Concepts in the source HOL system, that is types and constants, can be mapped to concepts in Isabelle/HOL; this facilitates a true integration of imported theorems and theorems that ar...
متن کاملAn Interpretation of Isabelle/HOL in HOL Light
We define an interpretation of the Isabelle/HOL logic in HOL Light and its metalanguage, OCaml. Some aspects of the Isabelle logic are not representable directly in the HOL Light object logic. The interpretation thus takes the form of a set of elaboration rules, where features of the Isabelle logic that cannot be represented directly are elaborated to functors in OCaml. We demonstrate the effec...
متن کاملFormalization and Assessment of Lowe’s Modal Ontological Argument
Concrete Necessary Numbers God Contingent Fiction Stuff Our experiments in Isabelle/HOL confirm that the conclusion C: ∃x.Necessary x ∧ Concrete x follows from premises P2: ∃x.Necessary x ∧ Abstract x, P3: ∀x.Abstract x → Dependent x, P4: ∀x.Dependent x → (∃y.Independent y ∧ x dependsOn y) and P5: ∀x.Necessary x → (∀y.x dependsOn y → Necessary y). Here, Necessary and Concrete are uninterpreted ...
متن کاملFormalizing O Notation in Isabelle/HOL
We describe a formalization of asymptotic O notation using the Isabelle/HOL proof assistant.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archive of Formal Proofs
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013